RFM模型是互聯(lián)網(wǎng)衡量當(dāng)前用戶價(jià)值和客戶潛在價(jià)值的重要工具和手段。RFM是Rencency(最近一次消費(fèi)),F(xiàn)requency(消費(fèi)頻率)、Monetary(消費(fèi)金額),三個(gè)指標(biāo)首字母組合。
本次數(shù)據(jù)中通過最近消費(fèi)(R)和消費(fèi)頻率(F)建?RFM模型:
- 重要?價(jià)值客戶:指最近?次消費(fèi)較近?且消費(fèi)頻率較?的客戶;
- 重要喚回客戶:指最近?次消費(fèi)較遠(yuǎn)且消費(fèi)頻率較?的客戶;
- 重要深耕客戶:指最近?次消費(fèi)較近且消費(fèi)頻率較低的客戶;
- 重要挽留客戶:指最近?次消費(fèi)較遠(yuǎn)且消費(fèi)頻率較低的客戶;
1 R計(jì)算
-- 獲取用戶最近的購買時(shí)間
create view user_recency as
select user_id,max(dates) recent_buy_time from temp_trade where behavior_type ='2' group by user_id
-- 計(jì)算每個(gè)用戶的最近購買時(shí)間與2019-12-18相差幾天,并根據(jù)天數(shù)給予分?jǐn)?shù)
create view r_level as
select user_id,recent_buy_time,datediff('2019-12-18',recent_buy_time),
case when datediff('2019-12-18',recent_buy_time)<'2' then '5'
when datediff('2019-12-18',recent_buy_time)<='4' then '4'
when datediff('2019-12-18',recent_buy_time)<='6' then '3'
when datediff('2019-12-18',recent_buy_time)<='8' then '2'
else '1' end as r_value
from user_recency
order by recent_buy_time
2 F計(jì)算
-- 獲取用戶購買次數(shù)
create view user_buy_frequency as
select user_id,count(behavior_type) buy_frequency from temp_trade where behavior_type ='2' group by user_id
-- 對(duì)購買次數(shù)進(jìn)行打分
create view f_level as
select user_id,buy_frenquecy,
(case
when buy_frenquecy<=2 then 1
when buy_frenquecy<=4 then 2
when buy_frenquecy<=6 then 3
when buy_frenquecy<=8 then 4
else 5 end) f_value
from user_buy_frequency
3 整合
-- R與F整合分類用戶
select avg(r_value) r_avg from r_level; -- 2.7939
select avg(f_value) f_avg from f_level; -- 2.2606
select r.user_id,r.r_value,f_value,
(case
when r.r_value>2.7939 and f.f_value>2.266 then '重要價(jià)值客戶'
when r.r_value<2.7939 and f.f_value>2.266 then '重要喚回客戶'
when r.r_value>2.7939 and f.f_value<2.266 then '重要深耕客戶'
when r.r_value<2.7939 and f.f_value<2.266 then '重要挽留客戶'
end) r_f_value -- 沒有其他結(jié)果時(shí),就不加else
from r_level r inner join f_level f on r.user_id=f.user_id
本文經(jīng)授權(quán)發(fā)布,不代表增長黑客立場,如若轉(zhuǎn)載,請(qǐng)注明出處:http://m.allfloridahomeinspectors.com/quan/76768.html